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An artificial habitat increases the 
reproductive fitness of a range-
shifting species within a newly 
colonized ecosystem
Zachary J. cannizzo  1,4*, Susan Q. Lang2, Bryan Benitez-nelson2 & Blaine D. Griffen3

When a range-shifting species colonizes an ecosystem it has not previously inhabited, it may experience 
suboptimal conditions that challenge its continued persistence and expansion. Some impacts may 
be partially mitigated by artificial habitat analogues: artificial habitats that more closely resemble 
a species’ historic ecosystem than the surrounding habitat. If conditions provided by such habitats 
increase reproductive success, they could be vital to the expansion and persistence of range-shifting 
species. We investigated the reproduction of the mangrove tree crab Aratus pisonii in its historic 
mangrove habitat, the suboptimal colonized salt marsh ecosystem, and on docks within the marsh, 
an artificial mangrove analogue. Crabs were assessed for offspring production and quality, as well 
as measures of maternal investment and egg quality. Aratus pisonii found on docks produced more 
eggs, more eggs per unit energy investment, and higher quality larvae than conspecifics in the 
surrounding salt marsh. Yet, crabs in the mangrove produced the highest quality larvae. Egg lipids 
suggest these different reproductive outcomes result from disparities in the quality of diet-driven 
maternal investments, particularly key fatty acids. This study suggests habitat analogues may increase 
the reproductive fitness of range-shifting species allowing more rapid expansion into, and better 
persistence in, colonized ecosystems.

Species range shifts are one of the most widespread symptoms of climate change, occurring across marine1, fresh-
water2, and terrestrial habitats3. Range shifts alter not only the distribution of species, but also the composition 
of ecological communities and the functioning and resilience of ecosystems in the face of continued change1,4. 
At times, differential shifting responses lead to community reorganization, including the decoupling of species 
ranges from those of the foundation species of their historic ecosystems5. When this occurs, a shifting species 
may colonize an ecosystem for which it has no ecological or evolutionary experience (i.e. novel to the colonizing 
species)5 and where novel interactions are likely to result in suboptimal conditions6–8. While species may survive 
in such colonized suboptimal ecosystems, their continued spread and persistence may be hindered. The preva-
lence of such colonizations is expected to increase5,9. Thus, understanding how habitat effects impact the fitness 
of species in newly colonized ecosystems is necessary for understanding and predicting geographic range-shifts.

Reproductive fitness is central to individual and population success. The importance of reproduction is fur-
ther magnified during range shifts, as propagule pressure is a primary determinant of success during colonization 
and expansion10,11. Habitat effects alter reproductive potential through a range of environmental and biological 
factors12,13 potentially altering an individual’s contribution to the persistence and expansion of a colonizing popu-
lation. For shifting species, pockets of favorable habitat that provide conditions which increase reproductive suc-
cess within suboptimal novel ecosystems could play a key role in the fitness, persistence, and continued expansion 
of the population. Habitats that replicate the conditions of the historic habitat are particularly likely to provide 
an increase in reproductive fitness. These “analogous habitats”, so named because they act as ecological ana-
logues to a historically-preferred habitat, are often artificial and provide improved conditions for organisms over 
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a surrounding suboptimal environment8,14 [and references therein]. These improved conditions could increase 
the quantity and quality of reproductive investment compared to the surrounding suboptimal habitat, leading 
analogous habitats to play an important role in the success of range-shifting species. Given the ubiquity of anthro-
pogenic structures (buildings, power lines, boat docks, etc.) in the modern environment, there are many oppor-
tunities for these structures to act as habitat analogues.

The range expansion of the mangrove tree crab Aratus pisonii provides an opportunity to examine the repro-
ductive impacts of a suboptimal colonized ecosystem (the saltmarsh), and an analogous habitat embedded within 
(boat docks), at the leading edge of this range expansion. This semi-terrestrial crab has historically been associ-
ated with mangrove forests throughout the neotropics15,16. Fresh mangrove leaves are the primary diet of these 
crabs with animal material taken opportunistically17 and preferred when available18. Individuals show strong 
site fidelity to individual trees, rarely traveling more than 25 m from their home tree19. Aratus pisonii generally 
reside on mangrove branches where they actively avoid water, except to wet their gills or release larvae, due to 
high aquatic predation20. Crabs even leave ground shelter to climb structure on the rising tide16,21 (pers. obs.). 
However, the northern range expansion of this arboreal crab has recently outpaced that of mangroves resulting 
in its colonization of salt marshes along the South Atlantic coast of the United States, an ecosystem it had not 
previously inhabited22.

The salt marsh presents A. pisonii with a mangrove-free environment and has numerous consequences for the 
crabs found there. Compared to conspecifics in the mangrove, crabs in the marsh experience inferior foraging 
and dietary conditions8, increased predation20, and more variable thermal conditions that are warmer in summer 
and colder in winter8,23. The marsh also alters important aspects of A. pisonii behavior by inducing riskier foraging 
and thermoregulation8 as well as altered social interactions24 and the loss of site fidelity19. Further, crabs in the 
marsh exhibit smaller average and maximum body size7,8 and reduced larval quality7 compared to crabs in the 
mangrove. The sum of these effects suggests the salt marsh is a suboptimal habitat for A. pisonii. Yet, A. pisonii are 
also found on boat docks within the salt marsh. Compared to the surrounding habitat, the sturdy vertical struc-
ture and canopy-like coverings of docks superficially resemble mangroves. Docks provide a rare shaded habitat 
within the marsh that results in cooler summer and warmer winter conditions than the surrounding habitat8,23. 
The more favorable thermal conditions provided by docks, and a higher quality diet high in animal material are 
likely responsible for the larger body size of the crabs found there8. Docks also provide improved disturbance 
refuge25 and allow A. pisonii to persist further north than elsewhere in the salt marsh ecosystem23. By providing 
conditions superior to the surrounding salt marsh and more similar to the historic mangrove8, docks provide 
both a mangrove analogue and a refuge habitat to A. pisonii within the suboptimal novel salt marsh ecosystem. 
However, the impact of the dock habitat on A. pisonii reproduction has not yet been explored. While previous 
studies have compared the reproductive potential between A. pisonii in the mangrove and salt marsh22, none have 
examined the mechanisms behind observed differences, which are critical in order to fully understand the system 
and inform management. Given the numerous benefits docks provide, they may also increase the reproductive 
potential of A. pisonii over conspecifics elsewhere in the marsh, thereby playing an important role in the success 
and expansion of this range-shifting species.

We sought to determine if docks increase the reproductive potential of A. pisonii within the colonized salt 
marsh by comparing the quantity and quality of offspring produced in these two habitats and in the historic 
mangrove. We further explored the mechanisms behind any observed differences in reproductive potential by 
comparing five metrics between each of the three habitats: (1) the proportion of total body mass invested in 
reproduction; (2) egg energy content, which impacts larval quality26; (3) egg glycogen content, an important 
constituent of arthropod reproductive investment27,28; (4) egg lipids, the most important component of embry-
onic development29; and (5) the fatty acids (FA) that made up the egg lipids, which are critical to offspring quality 
and provide measures of the quality of both maternal reproductive investment and diet30,31. Given the breadth 
of factors investigated, this study represents a thorough exploration of habitat-specific impacts on the reproduc-
tive fitness of a range-shifting species and may thus serve as a model for future studies of shifting populations. 
Ultimately, we hypothesized that A. pisonii found on docks would display quantitatively and qualitatively superior 
reproduction compared to conspecifics in the surrounding salt marsh as a result of dietary differences between 
habitats, and that reproductive success on docks would be more similar to that found in the mangrove habitat.

Results
Reproductive season. The reproductive season of A. pisonii outside of the tropics has never been recorded. 
While A. pisonii reproduction is often described as continuous16,32, such studies were performed in the tropics 
where conditions encourage year-round reproduction33. In contrast, we found scarcely any ovigerous females 
in May and November, and none from December-April. This reproductive season was consistent across habitat, 
latitude (27.43°N to 29.94°N; Table 1), and over four consecutive years (2015–2018).

Demographics. The smallest and average sizes of ovigerous females differed between habitats with salt marsh 
crabs becoming reproductively active at a smaller size than conspecifics in the dock and mangrove habitats while 
those from the dock were smaller than those from the mangrove (Saltmarsh: Smallest = 8.0, Avg. = 12.2 ± 1.6; 
Docks: Smallest = 11.1, Avg. = 17.0 ± 2.2; Mangrove: Smallest = 13.4, Avg. = 18.1 ± 2.5; all comparisons: 
p < 0.001; Fig. S1; Due to the number of statistical tests performed, here we present only the resulting p-values. 
See Appendix S1: Table S1 for full statistical output). The size distributions of ovigerous females also differed 
between habitats (p < 0.002; Fig. S1). There was abundant overlap between the distributions of collected females 
(Fig. S1).

Energetic investment. We used the gonadosomatic index (GSI), the proportion of the total dry weight 
made up of reproductive tissue (eggs and gonads), as a size-independent measure of reproductive effort34. Further, 
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as GSI is dependent on sex and reproductive stage, crabs were grouped as males, ovigerous (egg carrying) females, 
and non-ovigerous females for analysis. While the proportional energetic investment into reproduction does not 
itself indicate a higher quality reproductive investment or reflect the ultimate quality of a habitat as it relates to 
reproduction, it is a necessary measurement to understand the ultimate reproductive efficiency of an organism 
(i.e. the return on investment). The proportion of energy that crabs in these categories invested into reproduction 
differed between habitats. Crabs from the salt marsh invested a greater proportion of their energy into repro-
duction than conspecifics of the same sex/reproductive stage from the mangrove, (males: p < 0001, ovigerous 
females: p < 0.001, non-ovigerous females: p = 0.0162; Fig. 1). Further, in the salt marsh, males and ovigerous 
females invested proportionally more energy into reproduction than conspecifics on docks (males: p < 0.001, 
ovigerous females: p = 0.007; Fig. 1) while non-ovigerous females invested proportionally less energy (p = 0.021). 
Females on docks also invested a greater proportion of their energy into reproduction than conspecifics of the 
same reproductive stage in the mangrove (ovigerous: p = 0.048, non-ovigerous: p < 0.001) while males from the 
dock and mangrove did not differ (p = 0.230; Fig. 1).

Larval quality. We examined larval starvation resistance and larval size (dry weight) upon hatching - 
both common measures of offspring quality in crustaceans35–37. Larval starvation resistance was not impacted 
by maternal size (p = 0.120) or gut-width:carapace-width ratio (GW:CW; a proxy of long-term diet quality in 
crabs38) (p = 0.880). Thus, these variables were removed to simplify the analysis. Larvae from the mangrove dis-
played greater starvation resistance than those from either the dock or salt marsh (p < 0.001) while larvae origi-
nating from docks showed greater starvation resistance than those from the salt marsh (p = 0.009, Fig. 2a).

Larval size at hatching did not differ between habitats (dock vs. salt marsh: p = 0.781, dock vs. mangrove: 
p = 0.604, mangrove vs. salt marsh: p = 0.525; Fig. 2b) and was not affected by maternal size (p = 0.222). However, 
larval size increased with GW:CW (p = 0.025).

Clutch size. Crabs from the salt marsh had smaller clutches than conspecifics from either the mangrove or 
dock habitats (p < 0.001; Fig. 3a), which did not differ (p = 0.994). When clutch size was explored independent of 
maternal size, it was not impacted by GW:CW (p = 0.275) but crabs produced smaller clutches in October, when 
clutches were generally smallest, compared to all other months and larger clutches in July, when clutches were 
generally largest, compared to June and August (p < 0.05). Further, crabs from the mangrove had smaller clutches 
relative to their body sizes (i.e. size-independent, number of eggs produced per unit size) than conspecifics in the 
dock and salt marsh habitats (p = 0.038 and 0.034 respectively; Fig. 3b). The size-independent clutch sizes of crabs 
in the dock and salt marsh habitats did not differ (p = 0.989) despite higher proportional energetic investment 
(GSI) in the salt marsh.

Egg energy and glycogen content. Egg energy content was not associated with habitat, month of col-
lection, or maternal variables (p > 0.05, Appendix S1: Table S1, Fig. S2). However, non-eyed (stage-1) eggs had a 
higher energy content than eyed (stages 2 and 3) eggs (p < 0.001).

Habitat Site Lat-Long
Energetic 
Investment

Egg 
Quality

Larval 
Quality

Mangrove Pepper Park 27°29′42′N
80°18′12″W X X X

Mangrove Round Island Park 27°33′33″N
80°19′53″W X X

Mangrove Oslo Road 27°35′14″N
80°21′55″W X X X

Mangrove North Causeway 27°28′28″N
80°19′12″W X X

Mangrove Bear Point 27°25′48”N
80°17′10″W X

Salt Marsh GTM NERR 30°0′49″N
81°20′42″W X X X

Salt Marsh Anastasia State Park 29°52′40″N
81°16′32″W X X X

Salt Marsh Vilano Marsh 29°55′16′N
81°17′57″W X X

Dock Palm Valley 30°07′57″N
81°23′08″W X X X

Dock Yacht Club 29°53′09″N
81°17′08″W X X X

Dock Boating Club 29°56′34”N
81°18′31″W X

Dock Vilano Dock 29°56′33″N
81°18′32”W X

Table 1. Locations of collection sites. X’s denote which sites were used in each aspect of the study.
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Egg glycogen content did not differ between habitats and was not affected by GW:CW or month of collection 
(p > 0.05, Appendix S1: Table S1, Fig. S3). However, egg glycogen content decreased with increasing maternal 
size (p = 0.009).

Egg lipid and fatty acid content. Aratus pisonii in the mangrove produced eggs with a higher gross 
lipid content than conspecifics in either the salt marsh or dock habitats (p < 0.001; Fig. 4a), which did not differ 
(p = 0.725). While egg lipid content was not impacted by maternal variables (size: p = 0.452; GW:CW: p = 0.834), 
eggs produced in October displayed higher lipid contents than those produced in June and August (p < 0.001). 
Yet, the lack of an interaction between habitat and collection month (p > 0.05) suggests this seasonal effect was 
not habitat specific.

Here we present only the results of those FAs and FA groups of particular importance to reproductive potential 
and larval quality (See Appendix S1: Table S2 for full results). Unless otherwise stated, maternal size, GW:CW, and 

Figure 1. Proportional energetic investment into reproduction, calculated as gonadosomatic index, of male, 
ovigerous female, and non-ovigerous female A. pisonii in different habitats. Letters denote homogeneous groups 
in this and all other figures presented in this paper. In each boxplot, and in all other boxplots presented in this 
paper, the median is represented by a heavy line, the box represents the upper and lower quartiles, while the 
whiskers represent 95% of the data and circles show outliers.
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month of collection had no effect on any FA parameter (p > 0.05). Eggs deriving from the dock habitat had the 
highest concentration of developmentally important omega-3 FAs (Ω-3s) (vs. mangrove: p < 0.001; vs. salt marsh: 
p = 0.010; Fig. 4b) including the individual Ω-3s eicosapentaenoic acid (EPA) (vs. mangrove: p = 0.005; vs. salt 
marsh: p = 0.005) and docosahexaenoic acid (DHA) (vs. mangrove: p < 0.001; vs. salt marsh: p < 0.001). While 
eggs originating from the mangrove had the lowest concentration of EPA (vs. salt marsh: p < 0.001; vs. dock: 
p = 0.005), they did not differ from salt marsh eggs in the concentration of overall Ω-3s (p = 0.461) or DHA 
(p = 0.190). Further, the concentration of the Ω-3 alpha-linolenic acid (ALA) was highest in eggs originating from 
the mangrove (vs. dock: p < 0.001; vs. salt marsh: p = 0.026) while those from the dock and salt marsh did not 
differ (p = 0.189). Eggs originating from the dock had the highest concentration of developmentally critical highly 
unsaturated fatty acids (HUFA, ≥4 double bonds) with those from the mangrove exhibiting the lowest (dock vs. 
mangrove: p < 0.001; dock vs. salt marsh: p = 0.002; mangrove vs. salt marsh: p = 0.003; Fig. 4d). Despite their 
relatively low concentration of Ω-3s, eggs originating from the mangrove had a similar neurogenesis-stimulating 
omega-3:omega-6 ratio (Ω-3:Ω-6) to those from the dock (p = 0.075; Fig. 4c) and salt marsh (p = 0.564). Eggs 
originating from docks displayed a higher Ω-3:Ω-6 ratio than those from the surrounding salt marsh (p = 0.046; 
Fig. 4c). The Ω-3:Ω-6 ratio also increased with increasing maternal size (p = 0.040) resulting in an overall higher 
ratio in eggs from the mangrove compared to the salt marsh despite the insignificant effect of habitat. There were 
few seasonal effects, all of which were independent of habitat (habitat*month: p > 0.05), with eggs gathered in 
October displaying higher HUFA concentrations than those collected in June (p = 0.049) or July (p = 0.009), and 
higher EPA (p = 0.005) concentrations than those collected in July.

Due to the impact of maternal diet on larval quality12, we also explored fatty acid trophic markers (FATM). 
Eggs originating from the salt marsh exhibited the highest EPA:DHA ratio suggesting a lower maternal trophic 
position31,39 than conspecifics in the dock and mangrove habitats (p < 0.001; Fig. 5a), whose eggs did not differ 
in this measure (p = 0.078). Instead, eggs from the salt marsh displayed higher concentrations of odd-numbered 

Figure 2. (a) Kaplan-Meier curves comparing starvation resistance of A. pisonii larvae from different habitats. 
(b) Comparison of larval size at hatching, measured as larval dry mass, between habitats.
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fatty acids (OFAs) than those from docks (p = 0.019; Fig. 5b), suggesting a greater importance of detritus in the 
maternal diet31. The OFA concentration of eggs from the mangrove did not differ from those from the dock 
(p = 0.157; Fig. 5b) or salt marsh (p = 0.318). Egg OFA concentration also decreased with increasing GW:CW 
(p = 0.022).

Discussion
Our results demonstrate that an artificial analogous habitat within a colonized suboptimal ecosystem can increase 
the reproductive potential and fitness of a colonizing range-shifting species. Here, this manifests as docks pro-
viding a superior reproductive habitat to the surrounding salt marsh. Crabs found on docks produced greater 
numbers of higher quality larvae for a lower per-egg energetic investment than conspecifics elsewhere in the salt 
marsh (Fig. 6). Further, the disparity in larval quality appears to be driven by differences in the quality of maternal 
investment reflected in the egg fatty acids (Fig. 6). While some crabs collected on docks could have spent time 
in the marsh, this would reduce observed differences making our results conservative and strengthening their 
explanatory power.

Despite the benefits of analogous habitats, they may remain a subpar reproductive habitat compared to the 
historic ecosystem of a range-shifter (Fig. 6). In fact, A. pisonii in the mangrove produced the highest quality 
larvae. This is unsurprising, as organisms would be expected to reproduce most successfully under conditions 
to which they are adapted. However, the higher size-corrected clutch-sizes (i.e. per-size offspring production) 
of conspecifics in the dock and salt marsh habitats may counteract some of the reproductive fitness lost to larval 
quality. It is common for individuals in range-edge populations to produce more offspring than conspecifics in 
the range-core, who tend to apply a strategy of quality over quantity40 (and references therein). The higher lipid 
content of eggs from the mangrove further reflects these differing strategies. Yet, the dock habitat appears to allow 
A. pisonii to straddle these strategies, by producing large numbers of intermediate-quality larvae, and thus reflects 
a theoretical “mid-range” reproductive habitat despite occurring at the range-edge. Thus, while the historic eco-
system provides the ideal reproductive habitat, the artificial analogue is superior to the surrounding colonized 
ecosystem. If this pattern holds true across systems, it would provide a general mechanism that facilitates range 
expansion.

The increased reproductive potential of crabs on docks relative to the surrounding salt marsh emphasizes the 
potential importance of analogous habitats, and habitat effects in general, to range-shifting species. Egg quality 
parameters suggest the mechanism behind the acquired benefits as the only measure that differed between the 

Figure 3. (a) Aratus pisonii clutch-size in different habitats. (b) Size-independent clutch size in different 
habitats represented by residuals of the relationship between clutch size and crab size (carapace-width).
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dock and salt marsh was the FA profiles. The FAs invested in eggs are crucial to larval quality30,41 and reflect 
maternal diet31,42. Thus, it is likely that more favorable dietary conditions found on docks8 are largely responsi-
ble for the improved larval quality. This is reflected by eggs from docks exhibiting higher concentrations of the 
developmentally critical Ω-3s, EPA, DHA, Ω-3:Ω-631,41, and HUFAs43,44, all of which indicate a higher quality 
investment deriving from a high-quality diet30,42. The low EPA:DHA ratio of eggs from docks further supports 
this hypothesis by indicating a higher trophic position31,39. This suggests the dietary origin of the improved invest-
ment is animal material, a high-quality food source preferred by A. pisonii18 which is likely an important dietary 
component on docks8. In contrast, the high concentration of OFAs in salt marsh eggs suggests a higher dietary 
dependence on low-quality detritus31. Unexpectedly, the EPA:DHA ratio of eggs from the mangrove are similar to 
those from the dock habitat. This may suggest that crabs in the mangrove habitat consume more animal material 
than previously thought. Many studies of A. pisonii diet in the mangrove have focused on visual inspection of gut 
contents. As A. pisonii primarily consume only the easily digestible, difficult to identify soft parts of animals17, 
this could lead to an under estimate of the importance of animal material to their diet. Alternatively, this result 
may suggest that crabs on docks are feeding on a diet high in plant material as has previously been suggested for 
those in the mangrove. However, given previous results suggesting a diet high in animal material on docks8, the 
comparatively low trophic level of crabs in the salt marsh who have abundant access to plant material, and per-
sonal observation of crabs often feeding on dock fouling community animals such as sponges and isopods (pers. 
obs.), we find this explanation less likely. Ultimately, methods such as stable isotope analyses or metabarcoding 
of the gut contents may provide a more accurate picture of the diet of these crabs. While this topic merits further 
examination, it was beyond the scope of this study.

Diet appears to be the most important measured factor affecting offspring quality in this system. However, 
other environmental factors which differ between habitats likely also influence A. pisonii reproductive potential. 
Crabs in the salt marsh experience higher temperatures during the reproductive season than conspecifics in either 
the mangrove or dock habitats8. High development temperatures can alter the biochemical makeup45 and devel-
opment46 of crustacean larvae and may increase larval metabolic rates and use of yolk reserves. This could trans-
late to lower starvation resistance and dispersal ability upon hatching. The larger size of crabs on docks, likely a 
result of interacting factors8, further increases the quantity of the offspring they produce and, to some extent, the 

Figure 4. (a) Gross lipid content (positively associated with larval quality) of A. pisonii eggs originating from 
each habitat as percent of egg mass. (b) Ω-3 fatty acid content (positively associated with larval quality) of eggs 
originating from each habitat as proportion of egg mass. (c) Ω-3:Ω-6 ratio (positively associated with larval 
quality) of eggs originating from each habitat. Horizontal line represents a 1:1 ratio (d) Concentration of HUFA 
(positively association with larval quality) in eggs originating from each habitat.
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quality of the reproductive investment (Ω-3:Ω-6 ratio). The importance of these effects to the reproductive poten-
tial of the population is not yet known. At the extreme range edge, there may be a source-sink dynamic with docks 
acting as a source, especially after winter die-offs23. Even in areas of the salt marsh ecosystem where populations 
are firmly established, the higher reproductive potential of crabs on docks may allow them to have a dispropor-
tional impact on the population and may serve to accelerate repopulation after an extreme event, such as a trop-
ical storm25 or an extreme winter23. However, further analyses would be required to determine population-level 
effects. Nevertheless, results here suggest that individuals on docks make an important reproductive contribution 
to the expanding range of this species.

While the mechanism of greatest importance may change from system-to-system, this study suggests that 
analogous habitats provide a suite of conditions that can increase reproductive potential. Given the importance 
of reproduction to colonization success10,11 and the relatively small area of analogous habitats within colonized 
ecosystems, individuals occupying analogous habitats could play vital roles in the persistence and continued 
expansion of shifting species. Habitat analogues may even accelerate the rate of expansion through the production 
of more and/or higher quality offspring, an effect that could be enhanced if the habitat also allows for increased 
geographic penetration into the colonized ecosystem23. Thus, understanding the role of analogous habitats will be 
critical for the management and prediction of range-shifts.

Whether they are gravel pits47, ponds48, docks8 or some other structure, many habitat analogues are artificial14 
(and references therein). This provides a unique opportunity for the management of range-shifting species. The 
most immediate course of action is to recognize the potential of artificial structures as habitats and make a con-
scious effort to search them for possible range expanding species. Once such a species has been identified, direct 
action pertaining to the artificial habitat itself can be considered. Through the installation, alteration, or removal 
of analogous habitats, managers may be able to manipulate habitat effects and target reproductive hot-spots of 
range-shifters to encourage or reduce their spread and persistence. For instance, artificial structures could pro-
vide habitats to shifting mangrove-associated species, a habitat which is globally threatened49, and be used as 
dispersal corridors in areas of mangrove deforestation. The establishment of corridors between favorable habitats 
is a commonly discussed strategy to aid range-shifting species50,51 and artificially modified habitats have been 
used to improve conditions in climate-impacted native ecosystems52,53. However, habitat construction has not 
been a focus in managing the climate-mediated range-shifts of native species into new ecosystems (but see54). 

Figure 5. (a) EPA:DHA ratio (corresponds positively with maternal trophic level) of eggs originating from 
each habitat. (b) Concentration of odd-numbered fatty acids (corresponds positively with maternal relative 
detritivory) of eggs originating from each habitat.
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In such instances, species are not simply moving between fragments of historically-favored habitat, but colo-
nizing entirely new ecosystems where novel habitat effects will play a permanent role in the persistence of the 
population. Our results suggest that the strategic placement or modification of artificial structures within these 
natural, but suboptimal, ecosystems could increase the reproductive success of range-shifting species that are 
reproduction-limited and, given the relatively small size of these habitats, play an outsized role in their persistence 
and rate of shift in a colonized ecosystem.

While habitat effects are likely of greatest importance to larval and seed dispersers, even mobile 
adult-dispersing species could receive reproductive benefits from habitat analogues through mechanisms such as 
predation refuge or improved diet. This potential of artificial habitat analogues to mitigate negative habitat effects 
and increase reproductive fitness has broad applicability across systems. Despite the relative lack of study on the 
role of analogous habitats during range shifts (but see55,56), they could provide a vital reproductive boost for shift-
ing populations encountering suboptimal conditions. If the benefits documented here are general across systems, 
the role of artificial habitat analogues in altering reproductive fitness could be important to the management and 
success of future range-shifting species. Thus, both habitat analogues and habitat effects represent understudied 
phenomena in range-shift ecology that merit further investigation in the study and management of range-shifts.

Methods
Demographics. The body size of all ovigerous females were compared between habitats using an ANOVA 
followed by a Tukey’s HSD test. Further, we compared the size distributions of ovigerous females in each habitat 
using Komlogorov-Smirnov (K-S) tests. All statistical analyses in this study were performed in R 3.1.1.

Energetic investment. To examine reproductive effort, we randomly collected 15 individuals by hand on 
each of nine randomly selected days in each habitat (Table 1) over two consecutive summers (n = 135/habitat). 
For all aspects of this study, sites were selected based on accessibility via kayak and chosen so that sites within 
habitat types were as similar as possible. Salt marsh sites were at least 0.75 km from the nearest dock ensuring that 
crabs in the salt marsh, which rarely stray more than 25 m from a central foraging area19, had no interaction with 
docks. Crabs were immediately placed on dry ice and kept frozen until dissection. During transport, the legs of 10 
crabs collected from the mangrove became detached and mixed making it impossible to reliably obtain somatic 
tissue weight and resulting in a sample size of 125 crabs from the mangrove. We separated the eggs and gonads 
from the rest of the body, dried these to constant weight at 60–70 °C, and examined GSI as the ratio of the dry 

Figure 6. Summary of conclusions drawn from the results of this study. Green arrow indicates the first habitat 
in the comparison is better for the result being compared while a red arrow indicates it is worse and a blue equal 
sign indicates the habitats did not differ. A black dash indicates an inability to draw a conclusion.
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weights of the reproductive and somatic tissues of each crab. Crabs were grouped by sex and reproductive stage 
(male, ovigerous female, and non-ovigerous female), and we separately compared the GSI of these three groups 
across habitat type using independent linear models (LM) with habitat type as a fixed factor. Data were pooled 
across years and sites for analysis as GSI did not differ between years or site in any group (p > 0.05). While no 
other experiment spanned multiple years, we pooled across sites within habitats for all further analyses as site, as 
a fixed factor, never had a significant effect. The nature of studying a range expansion makes it impossible to avoid 
the fact that habitat type is confounded with latitude. We initially included latitude as a fixed factor in all statisti-
cal tests. However, latitude never explained a significant amount of the variation and was thus dropped from all 
analyses. Values of each result across the range of latitudes included in this study can be found in Appendix S1 
(Figs. S4–S10).

Larval quality. For both measures of larval quality (starvation resistance and larval size at hatching), we took 
advantage of the lunar synchronization of A. pisonii reproduction16 by collecting five ovigerous females from 
each of three sites in each habitat (Table 1) during the week preceding the August full moon. These 45 crabs (15/
habitat) were maintained at 28–30 °C in individual aquaria (22.8·15.2·16.5 cm, l·w·h) with a petri dish of 0.2 μm  
filtered sea water and food from their ecosystem of origin (Spartina alterniflora for dock and salt marsh, 
Rhizophora mangle leaves for mangrove). Food was changed every other day and water was changed daily. Crabs 
were checked twice daily (8am and 11 pm) for release of larvae into the water dish, which always occurred after 
nightfall, and no crab was housed for more than eight days before larval release.

Upon larval release, maternal crabs were dissected. We measured the carapace width and the width of the 
cardiac stomach to the nearest 0.1 mm. We then calculated the GW:CW of each crab. In addition, 10 larvae 
were transferred to individual autoclaved 13·100 mm glass culture tubes containing ~6 ml of 0.2 μm filtered sea 
water. These larvae (n = 150/habitat) were checked daily for survival (starvation resistance), at which time we 
performed a ~2 ml water change. Once all larvae died, we examined larval starvation resistance using a cox pro-
portional hazards model (R 3.1.1, package coxme) with habitat, maternal size, and maternal GW:CW as explan-
atory variables for the number of days survived. We also included maternal ID as a random factor to account for 
non-independence of larvae from the same mother. Lastly, 10 larvae from each brood were collected at hatching, 
preserved in 95% ethanol, and later dried to constant weight at 60–70 °C. We compared larval dry mass between 
habitats using a linear mixed model (LMM) (R 3.1.1. package lme4) with the same variables used to explore star-
vation resistance.

Crab collection for clutch size and egg quality analyses. We collected 20 ovigerous females by hand 
from each habitat (Table 1) during the week preceding the full moon each of five consecutive months throughout 
the A. pisonii reproductive season (June–October, n = 100/habitat over season). Collected crabs were immediately 
placed on dry ice and stored at −80 °C until dissection, at which time the size and GW:CW were determined and 
the whole egg mass was carefully removed. A small number of eggs (~50) were observed via microscopy to iden-
tify development stage31 and returned to the egg mass. The eggs of the first 10 crabs from each monthly sampling 
(n months = 5) in each habitat found to be carrying stage-1 non-eyed eggs were freeze-dried, stored at −80 °C, 
and used for lipid and glycogen analyses (see below). The eggs of the remaining 10 crabs from each monthly sam-
pling in each habitat were used to analyze clutch size and egg energy content (see below). Unless otherwise stated, 
all analyses had a sample size of 50 individuals per habitat.

Clutch size. To determine the quantitative offspring production of A. pisonii in each habitat, we examined 
clutch size. We counted the eggs (~200) in a subset of the clutch of each crab and separately dried both this subset 
and the rest of the clutch to a constant weight at 60–70 °C. Total clutch size was determined by dividing the mass 
of the full clutch by the average mass of an individual egg in this subset. Dried clutches were stored individually 
for later analyses.

Clutch size scales with maternal size in A. pisonii7,57, and the average size of A. pisonii differs between hab-
itats8. We therefore first compared clutch size between habitats independent of other factors using an ANOVA 
followed by a Tukey’s HSD test. We then compared clutch size between habitats while controlling for differences 
in maternal size by obtaining the residuals of the regression of clutch size and crab size and comparing these val-
ues between habitats using an LM with habitat, month of collection, and GW:CW as fixed explanatory variables.

Egg energy and glycogen content. We used a Parr semi micro bomb calorimeter to determine the energy 
content (kJ/g) of the eggs previously used to determine clutch size and compared this value between habitats 
using an LM with habitat, month of collection, maternal size, and GW:CW as fixed explanatory variables. Unless 
otherwise stated, these fixed variables were employed in all further LMs. Egg stage was also added as an explan-
atory factor to account for variation attributable to developmental stage. Some clutches were pooled within hab-
itats, months, and development stage to meet the minimum mass for calorimetric analysis, resulting in sample 
sizes from the salt marsh of 9 in June, 8 in September, and 5 in October as well as 9 clutches from the mangrove 
in October.

Following the manufacturer instructions, we used a Sigma-Aldrich Glycogen Assay Kit MAK016 to determine 
the glycogen concentration, as percentage of egg mass, of a subset (~10 mg) of each stage-1 clutch (see below). We 
compared these concentrations between habitats with an LM.

Egg lipid and fatty acid content. We examined the egg lipids of each crab collected from each habitat 
(10/month, n = 50/habitat) that held stage-1 non-eyed eggs. Lipids from a subset (20–40 mg) of each clutch were 
extracted using a modified Folch Extraction58,59. Egg lipid content, as percent weight, was compared between 
habitats using an LM. Lipids were then flushed with nitrogen and stored at −80 °C (<2 weeks).
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We analyzed the diversity and quantity of the FAs of six randomly-selected egg masses from each habitat each 
month (n = 30/habitat; see Appendix S1 “Supplemental Methods” for detailed methods). Briefly, we modified 
the methods of60 to methylate the FAs and analyzed the samples via gas chromatography-mass spectrometry 
using an Agilent Technologies 6890 N Network equipped with a 30 m Restek FAMEWAX column (0.25 mm ID, 
0.25 μm df) connected to an Agilent 5975 Network Mass Selective Detector. The concentration of each FA (μg FA/
μg egg) was determined via dilution curves derived from a Supelco 37 Component FAME Mix (Sigma Aldrich 
CRM47885). While we determined the concentration of all FAs, our analyses focused on those critical to crusta-
cean development and larval quality. This included the total Ω-3s, the individual Ω-3s EPA, DHA, and ALA, the 
Ω-3:Ω-6 ratio, and the HUFA concentration; all indices which correlate positively with larval quality30,31,41,49,50. 
We also explored the fatty acid trophic markers (FATM) of EPA:DHA ratio, a measure of trophic position31,39 
and the concentration of OFA, a measure of relative detritivory31. We compared the concentration of the FAs, FA 
groups, and FATMs between habitats using individual LMs.

Data availability
Data available from the Dryad Digital Repository (Cannizzo et al. 2020), https://doi.org/10.5061/dryad.
v15dv41sg.
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